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High resolution global spatiotemporal assessment
of rooftop solar photovoltaics potential for
renewable electricity generation
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Rooftop solar photovoltaics currently account for 40% of the global solar photovoltaics

installed capacity and one-fourth of the total renewable capacity additions in 2018. Yet, only

limited information is available on its global potential and associated costs at a high spa-

tiotemporal resolution. Here, we present a high-resolution global assessment of rooftop solar

photovoltaics potential using big data, machine learning and geospatial analysis. We analyse

130 million km2 of global land surface area to demarcate 0.2 million km2 of rooftop area,

which together represent 27 PWh yr−1 of electricity generation potential for costs between

40–280 $ MWh−1. Out of this, 10 PWh yr−1 can be realised below 100 $ MWh−1. The global

potential is predominantly spread between Asia (47%), North America (20%) and Europe

(13%). The cost of attaining the potential is lowest in India (66 $ MWh−1) and China (68 $

MWh−1), with USA (238 $ MWh−1) and UK (251 $ MWh−1) representing some of the

costliest countries.
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From powering the National Aeronautics and Space
Administration (NASA’s) Vanguard satellites in 1958 to
lighting homes in sub-Saharan Africa, solar photovoltaics

(PV) technology has come a long way. Rooftop Solar photo-
voltaics (RTSPV) technology as a subset of the solar photovoltaic
electricity generation portfolio can be deployed as a decentralized
system either by individual homeowners or by large industrial
and commercial complexes. Over the past decade, reduction in
the deployment cost coupled with policy-driven initiatives has led
to a rapid uptake of RTSPV globally. Between 2006 and 2018, the
installed capacity of the RTSPV has grown from 2.5 GW to 213
GW- an 85-fold increase globally1. With an additional capacity
installation of 41 GW, RTSPV currently accounts for 40% of the
global cumulative installed capacity of the solar PV and nearly
one-fourth of the total renewable capacity additions in 2018—
surpassing the combined new installed capacities of both coal and
nuclear. At the same time, RTSPV technology has demonstrated a
steep decline in its deployment costs which ranged between 63
and 265 $ MWh−1 in the year 2019—a reduction of between 42
and 79% over 2010 values2.

Globally, nearly 800 million people were without electricity in
2018, the majority of who are living in rural areas3. Here, the role
of decentralized rooftop PV in advancing the ethos of the Sus-
tainable Development Goal (SDG) 7 becomes very important.
The fast installation time and low levelised cost of RTSPV can aid
in mitigating the problem of energy access by making citizens or
communities a prosumer. The prosumer can generate and con-
sume electricity as per their requirements without depending
exclusively on a centralized grid infrastructure. As the fastest
deployable energy generation technology with the highest year-
on-year growth rate4, solar PV technology is projected to supply
25–49% of the global electricity needs by 2050 while providing
employment for up to 15 million people between 2018 and 20505.
Out of this, RTSPV deployment will contribute up to 40% of the
total solar PV-derived electricity generation by 2050.

Increased deployment of RTSPV can support displacing fossil
fuels out of the current energy generation mix as can be observed
in the successful implementation of rooftop photovoltaics in
Germany. As the demand for electricity as an energy source
increases in the future, RSTPV based generation sources will form
a large part of the future renewable-based generation portfolio.
This shift in the current generation mix coupled with the future
low carbon generation capacity expansion can aid in reducing the
energy-derived greenhouse gas emissions and also aid in advan-
cing the SDG13 goal of combating climate change with co-
benefits for the SDG3. RTSPV technology can thus lead to
consumer-driven breakthroughs in tackling climate change,
reducing local air pollution, accelerating development, and pro-
viding affordable energy access to areas lacking electrification.

To better understand the role that an RTSPV system can fulfill
in the future, a global harmonized geo-mapped assessment of its
technical potential and the costs associated with attaining the
technical potential is pertinent especially when such assessments
at a global level are lacking. RTSPV systems are deployed as a
decentralized system contrary to the utility-scale solar PV sys-
tems, which increases the complexity of its assessment as the
smallest unit of deployment becomes a rooftop as opposed to a
large plot of a green or brownfield site. Along with the com-
plexities associated with accurately determining the rooftop area,
assessment of seasonal variations of its potential is also important
to understand the supply dynamics of variable renewable energy
(VRE) technologies like RTSPV. This highlights the need for a
high-resolution spatiotemporal assessment that accurately
represents the geographical variability of the built environment
along with impacts of seasonal changes in solar insolation.

Current research primarily focuses on utility-scale solar PV
resource assessment at a global scale. A similar assessment has
not been done for decentralized RTSPV at a scale greater than
regional/national levels6–9. As a result, energy system models and
research informing climate change policy have not fully con-
sidered the role of solar PV in meeting the climate change
mitigation goals10. Assessment of RTSPV potential requires an
underlying dataset of building footprints, solar insolation map-
ping, and technology-specific information like panel size, con-
version efficiency, and system losses. The current literature is
adequate in providing global information on the latter two
categories, with the largest inaccuracies11 attributed to the
demarcation and calculation of building footprints which require
large data and costly information processing hardware to extract
buildings from satellite imagery12.

Two major approaches are currently used to determine built-
up area, or more specifically the extent and area occupied by
building rooftops, Supplementary Table 7. The first approach
addresses the problem from a “Bottom–up”13–23 perspective and
is the most common approach currently implemented to calculate
rooftop area at scale. Such approaches establish the relationship
between building footprint data (cadastral, crowd-sourced,
satellite-derived) and socio-economic metrics (Gross Domestic
Product (GDP), Population) for a small sample set and then
estimate the extent of building footprints across a wider scale. In
the study by Jacobson et al.24, the authors have used the bottom-
up methodology to calculate available rooftop areas for 179
countries by establishing relationships between population, GDP,
and floorspace area per capita based on sample data from the
USA and several European countries. For a full set of global
countries, Gernaat et al.25 have used the relationship between
population density, household expenditure, and rooftop area to
calculate available rooftop area per country. They have calibrated
their relationship equations on World Bank’s data and realized an
R2= 0.66. These methods are quick to implement and are rela-
tively accurate when predicting building footprint areas in the
neighborhood regions, but inaccuracies arise when the analysis is
upscaled towards country/regional levels. This reduction in
accuracy26 can be attributed to the inaccuracies in the coarse
geospatial mapping of socioeconomic data27 and the hetero-
geneity of built-up landscapes.

The second approach addresses the problem from a
“Top–Down”28–39 perspective, utilizing aerial imagery to deter-
mine built-up area along with building footprints contained in it.
“Top–Down” methods include earth observation, drone-mounted
Light Detection and Ranging (LiDAR), and machine learning
(ML) classification algorithms to detect buildings. On a country-
wide scale, Gagnon et al.7 have used LiDAR datasets for 128 US
sample cities to calculate available rooftop areas for the con-
tinental USA using statistical inferencing to extrapolate beyond
their sample site. They have generated statistical measures to
generalize rooftop orientation, slope, and availability based on
high-resolution LiDAR imagery. Collecting, processing, and
analyzing the aerial imagery is a costly and computationally
intensive task requiring datacentre scale infrastructure. These
shortcomings have led to limitations in the scale of studies using
top-down methods, where only a few commercial40–42 ventures
have been able to provide country-wide building footprints, and
to date, a global-scale analysis has yet to be implemented. One
solution to mitigate the processing and data bottleneck is to use
predefined land cover classification43–49 to demarcate global land
areas which are artificially built up and then downscale the built-
up area to actual building footprint49 using simplifying assump-
tions. This hybrid approach was used in a study by Bodis et al.6,
where they have established a relationship between cadastral data
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of Netherlands, CORINE landcover, and European Settlement
Map to infer the rooftop area in the other 27 EU countries.

The current state of art50–55 methods utilize ML-based object
detection algorithms to map individual buildings for Region of
Interest (ROI) at the city/country level. However, none of the
state of art methods have been applied to a global ROI assessment
partly due to the amount of data processing required in ML-based
methods and partly due to the limitations of the ML algorithm in
detecting similar objects that deviate from training sample sets.

Here, we directly address the gap in the current literature by
developing a hybrid framework that integrates “Top-down” and
“Bottom-up” methods using a ML model to provide a high-
resolution global assessment of rooftop solar PV technical potential
at a monthly temporal resolution (Fig. 1). We divide the entire global
landmass into multiple 10 km2 assessment units. In each assessment
unit, we utilize a high-resolution population dataset (at 100m spatial
resolution), road length, and built-up area boundaries to estimate the
rooftop area. The estimation algorithm built upon the ML model is
designed to learn the relationship between population, road length
and built-up area boundaries, and actual rooftop area from a large
global sample set covering countries in various stages of socio-
economic development and built-up topography. This way we utilize
a comprehensive set of disparate built environment archetypes
involving variable population densities in different landscape con-
figurations to overcome the limitations imposed by the “Top-down”
and “Bottom-up” methods used in previous studies. Along with the
geo-mapping of the technical potential, we also map the associated
Levelised Cost of Energy (LCOE) and regional supply cost curves for
a global ROI covering >195 countries, spanning 130 million km2

land area, containing buildings ranging from detached rural nucle-
ated settlements to global conurbation dotted by multi-storied sky-
scrapers across varied geographies.

In our study, we define the “technical potential” of RTSPV as
the maximum electricity generation that can be derived from a

given rooftop area, where the rooftop area is kept consistent with
the 2015 year’s built-up extent and does not include additional
building stock created after that. The results presented in this
study have considered a 100% rooftop availability at a 10% panel
efficiency. To account for the change in the potential due to
different panel efficiencies and rooftop availability, we have
documented global and regional potentials for a set of rooftop
scaling factors and panel efficiencies (Supplementary Tables 4 and
5). Additional boundary conditions of our study and the limita-
tions in the interpretation of the main results are documented in
the “Methods” section.

Results
Model design and validation. We started by dividing the global
landmass into a Fishnet Grid (FN) containing a total of 3,521,120
unique squares of 10 km2 size, where each FN has a unique id and
is attributed to a unique country. Aggregation of the built area
(BAFN) within each FN was undertaken using built area sub-
classifications (100 m resolution) provided by the global land-
cover layer46 (LC) of the Copernicus land monitoring program.
Being derived from a native 10 m resolution satellite imagery, the
LC layer provided us with a significantly improved representation
of built-up area over the current state of art methods that utilize
coarser-resolution landcover classification. The use of pre-built
landcover classifications also aided in reducing the information
processing overheads related to manually classifying petabytes of
satellite imagery.

It is important to highlight that the BAFN layer aggregations
contain buildings along with roads, green area boundaries,
footpaths, parking lots, etc. These additional built-up structures
are not relevant to the current analysis and can occupy significant
BAFN areas in a low-density built environment. Methodological
uncertainties can also arise due to the heterogeneity of impervious

Fig. 1 Framework for assessment of RTSPV’s global technical potential and costs. The framework developed in this study starts with data preparation
and mapping of various geospatial metrics to both Top-down and Bottom-up pathways. Further, the machine learning model is trained and used to estimate
BFEFN values from BAFN, PPLNFN, and RLFN values. Next, the BFEFN values are used to calculate the technical potential (SP) with the aid of the conversion
factors (CF). Finally, the calculated potential dataset is used to map the Levelised Cost of Electricity (LCOE) values using IRENA’s renewable power
generation cost data. The detailed framework is described in the “Results” and “Methods” sections. Model parameters and regional mappings are provided
in Supplementary Tables 6, 8–10 and Supplementary Fig. 3a–d.
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landscapes and due to misclassification caused by the similar
spectral signatures of other built structures on the ground, but at
a global ROI, these errors form a very small percentage of the
ground truth. This underscores the need to downscale the BAFN

layer globally to accurately represent a harmonized rooftop area.
To downscale the BAFN layer, we started by generating a subset

of global FN containing actual building footprints40,42 (BFFN),
road length56 (RLFN), and population count57 (PPLNFN). For
calculating building footprints (derived from Microsoft AI,
Ecopia AI, and Open Street Map-OSM datasets), we aggregated
individual building footprints based on FN cells overlapping the
individual buildings to generate a single building footprint area
value per FN (Fig. 2). In total, 37,115 km2 of building footprint
area and 11.4 million km2 of the total land area were covered by
our sample FNs, accounting for >300 million individual buildings
ranging from small outdoor sheds to mega factories. The building
samples also provided us with a diverse set of building types in
different geographies spanning a wide spectrum of socio-
economic stages of development. These global sample sets
(Fig. 3a, Supplementary Table 1) are a marked improvement
over the previous literature, where a narrow sampling strategy
often at a city/country level is undertaken. Using heterogeneous
global building samples enables the overall analysis to be more
resistant to generalization error which is introduced due to
overreliance on a small set of similar built-up landscapes.

OSM provides a highly accurate open-source global roads
infrastructure dataset58, which we used for mapping road length
(RLFN). Our sample dataset showed a Pearson Correlation of 0.95
(Fig. 4b) between the building footprint sample and the road
length sample. It can be observed that in the real world, the
development of roads is often associated with increasing
population size and with increasing building stock. Road length
has not been used in any previous studies and will increase the

accuracy of downscaling over previous methods. In total, we
processed >16 million km of roads for our sample FNs (Fig. 3b).

For our population count aggregation, we utilized WorldPop’s
high-resolution griddled population count. The high-resolution
population dataset coupled with a high-resolution BAFN layer
enabled us to accurately map the population count for each of our
sample FN. Previous studies at country/regional scale have used
coarse resolution (≥1 km resolution) population count which can
lead to inaccuracies in downscaling due to over counting of the
population in a given FN.

Aggregation and processing of big data like geospatial building
and road datasets require a very high computation time and
significant cost in hardware. To overcome this challenge, we used
Google Earth Engine’s (GEE) cloud computing platform to
perform planetary-scale analysis, where the datasets were split
into smaller raster files based on each FN’s geographical extent
and finally aggregated to represent a single value (see “Methods”
section). It should be noted that the GEE platform is lacking in
the processing of vector data like building and road polygons, for
which we utilized multi-core processing enabled by ArcGIS PRO
desktop software. This combination of GEE for raster data
(PPLNFN, BAFN) and ArcGIS PRO for vector data enabled us to
process our datasets at a fraction of the time and cost. To our
knowledge, this is the first attempt at merging two fundamentally
different service platforms to assess global potentials, which could
be useful for other planetary-scale resource assessments. Links to
the input datasets and their validation reports are documented in
Supplementary Table 2.

Next, we linked the aggregated BAFN, PPLNFN datasets from
Top-down methods and processed BFFN, RLFN datasets from the
Bottom-up methods using a ML model that takes BAFN, PPLNFN,
RLFN datasets as independent variables and BFFN as the
dependent variables. The ML model trains from the relationship

Fig. 2 Visual representation of a sample FN involved in Bottom-up methods. a The image is depicting an area over New York, USA. The gridlines are the
geographical boundaries of Fishnet cells (FN), with each cell size of 10 km2. The red area inside each FN is the built area (BAFN). b The green areas in the
image are the non-built-up geography in the year 2015, with red areas representing BAFN as 100 m2 blocks. Each block has a value of 0–100% based on the
percent of built-up area in a block. c The black polygons are the building footprints (BFFN) derived from big data sources, inside a sample FN. The blue lines
are the roads (RLFN) inside the sample FN, with white areas representing empty spaces that are not used in our analysis. d The image represents the four
main categories of objects present inside each sample FN. The orange areas are the BAFN blocks, with red areas representing the actual buildings, yellow
lines representing roads, and white areas are the areas not considered in our study. Data Credits: Copernicus GLC Landcover, Microsoft Building Footprints,
and Open Street Maps.
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between the independent and dependent variables for our sample
FNs and estimates the aggregated building rooftop area for the
rest of the non-sample FNs, effectively downscaling the BAFN

layer to an estimated area occupied by building rooftops (BFEFN).
For data gaps in PPLNFN, RLFN layer, we used an iterative
imputing method to interpolate missing values in the dataset
using multiple regression runs.

In our tests, the ML model built upon XGboost algorithm
provided better accuracy (R2 value) and better overall error
reduction (considerably lower mean absolute error) in the
prediction of sample data as compared to multivariate regression
(Supplementary Table 3). To reduce the overfitting of the ML
model, a 10-fold cross-validation strategy was used for tuning
hyper-parameters to generate the best model (see “Methods”
section). The ML model performed well (Fig. 4d, e) with ±4 km2

error in predicting total building footprint per 100 km2 FN, with
the majority of errors lying between ±0.25 km2. Also, for a total of
37,000 km2 of absolute building footprint area across our samples,
a total of 4 km2 of absolute error was recorded. On a regional
level, slight left skewness/systematic underestimation of rooftop
area was observed for the Asian Region (Supplementary Fig. 1).
At the end of the downscaling step, a dataset containing 3,521,120
FN cells is generated, with each cell containing aggregated
building rooftop area (BFEFN).

Rooftop area to solar potential conversion was undertaken by
using World Bank’s conversion factor59 (CFFN) for locations
between 60°N and 45°S, covering over 99% of the world’s

population. The CFFN layer is provided as a griddled raster
dataset representing kWh produced by each kWp installed
capacity per day. The locations outside the latitudes were assigned
a constant CF value of 3.5 kWh/kWp/day (peak). Next, CFFN
values for each of the twelve months were used to generate
monthly solar potential per FN (SPFN,M). Further, we aggregated
monthly technical potentials to yearly technical potentials for
each of the countries to generate a global RTSPV potential map,
as shown in Fig. 5. To represent the costs associated with the
technical potential, we used the LCOE metric (see “Methods”
section). The capital expenditure (CAPEX) values range between
840 and 3874 $ kW−1 of installed capacity for 17 countries in
total, with the rest of the world being allocated averages for the
continent they are in. The operation and maintenance cost
(OPEX) and discount rates (DR) were based on whether the
country is OECD or Non-OECD. For each FN, LCOE costs were
calculated based on CAPEX, OPEX, SP, and DR with a project
lifetime of 25 years. Our technology cost data are based on
IRENA2 residential solar PV costs for 2019.

Global technical potential and cost assessment. Our assessment
shows a total global technical potential of 27 PWh yr−1, of which
Asia (13 PWh yr−1), North America (5.5 PWh yr−1) and Europe
(3.6 PWh yr−1) represent a majority of the potential followed by
Africa (2.9 PWh yr−1) and South America (1.7 PWh yr−1). The
hotspots for the potential are concentrated in and around the

Fig. 3 Geographical distribution of global roads and sample Fishnet cells. a Global distribution of sample FN was generated in our study. Microsoft AI-
based building polygons are used for the USA, Canada, and Tanzania, Ecopia AI-derived building footprint areas are used for the African countries. OSM-
derived building polygons representing a total of 4000 sample FNs are used for the rest of the world. b Geographic location of all the global roads used in
our analysis. OSM-derived global roads have near-global coverage, with each pixel on the map being for each road feature inside the country of reference.
Data Credits: Fig. 3b, © OpenStreetMap contributors.
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densely populated nucleated settlements globally (Fig. 5a). Nearly
20% (5 PWh yr−1) of the global potential is located within the
areas with a high population density (>1500 people/km2), with
55% (15 PWh yr−1) of the potential being dispersed within the
low-density areas (<500 people/km2). Amongst the countries,
China (4.3 PWh yr−1), the USA (4.2 PWh yr−1), and India (1.7
PWh yr−1) have the highest yearly potential (Table 1). A ±1%
deviation can be observed in the yearly global potential due to the
aggregation methodology of the CF factor (Supplementary Fig. 2).

Although the African region has a good solar insolation
endowment, the RTSPV potential is assessed as being the third
lowest due to low building stock. Amongst the African Region,
the largest potential is concentrated in the West African region
followed by the North African Region. The combined West and
North African regions have more potential than India, high-
lighting the importance that low-cost RSTPV can play in future
energy systems. Future population growth and a corresponding
increase in the building stock may increase the overall RTSPV
potential for Africa. Both North American and European regions
have similar assessed rooftop areas (~30,000 km2), yet North
America has nearly 1.5 times the potential of Europe due to
higher solar insolation during the year especially during the
winter months.

Along with spatial variability due to on-ground building
distributions, seasonal variability of the RTSPV potential is also
observed due to the variation in intra annual solar insolation. The
seasonal variability of the monthly global potential is between
1.84 and 2.61 PWh, with December and January representing the
months with the lowest global potential (Fig. 5a). Globally the
highest seasonal variability of the potentials is observed above the
45° north latitude covering Europe, Russia, the USA, and Canada.
Within regions, the highest intra annual variability of the
potentials (Fig. 6) is observed in the West European region
(EUW) with monthly potentials between 94 and 255 TWh. There
is a variability of ±40% around the average monthly potential of
183 TWh in EUW, with the highest monthly potential being
observed in the summer and the lowest monthly potentials in the
winter. The lowest regional intra annual variability of potentials is
observed in the West African region (AFW) with monthly
potentials between 97 and 119 PWh. There is a variability of ±1%
around the average monthly potential of 109 TWh in the AFW
region, with the maximum monthly potential observed in
December and January.

To analyze the cost of attaining the potentials, we generated supply
cost curves for seven world regions and also at an aggregated global
level (Fig. 7a). Nearly 10 PWh yr−1 (40%) of the global potential can

Fig. 4 Relationship between inputs, distribution of errors, and prediction accuracy of the downscaling model. The distribution of BAFN (Built Area) (a),
RLFN (Road Length) (b), and PPLNFN (Population) (c) in relation to the BFFN (Building Footprint). The distributions have a Pearson Correlation of 0.97, 0.95,
0.72, respectively. The distribution of errors in prediction (d) has a bell shape when using the trained model to predict the sample dataset. Each bar is the
count of FN that is in each error bin. The majority of errors lie in the −0.25 to +0.25 km2 per FN range, with peak error capping at ±5 km2 per FN. The
downscaling model built upon the machine learning model has shown adequate accuracy in prediction (e) with an R2= 0.98. Each cross represents the
predicted value of each sample FN. The density of points is higher for low values as the majority of sample FN will have smaller built-up areas contained in
them, with very few covering major cities due to the size of the FN used in this study.
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be achieved below 100 $ MWh yr−1, with the majority of the
potential being realized below 200 $ MWh−1 (Fig. 7b). At a global
level, nearly 40% of the potential can be achieved with an investment
equivalent to 10% of the 2015 global GDP value, and with an
investment equivalent to 30% of the 2015 GDP value, nearly 100% of
the global potential can be realized (Fig. 7c). We found that realizable
potential doubles with each subsequent doubling of capital
investment in RTSPV until invested capital is equivalent to 20% of
the global GDP value in 2015. An increase of investment from 20 to
30% of the global 2015 GDP value increases the realizable potential
by only 27% indicating the areas where the cost of implementation of
RSTV is very high. These areas are represented by large warehouse/
industrial complexes in Alaska and Canada, where yearly solar
insolation is low and CAPEX investment is high to cover the entire
large rooftops with solar panels.

At a global level, spatial variability in the LCOE is also observed
(Fig. 5b). In the northern hemisphere, the LCOE values gradually
increase from 40 $ MWh−1 to 280 $MWh−1 with increasing latitude.
Here North-East China is an exception which has shown a decrease in
LCOE values with increasing latitudes. For Asia, a majority of the
potential can be realized between 40 and 100 $ MWh−1 making the
RTSPV competitive with fossil fuel technologies. The cost of attaining
the country-specific potential is lowest in India at 66 $ MWh−1

compared to China (68 $ MWh−1).
For Europe, Africa, South America, and Island Nations a

majority of total potential can be realized below 180 $ MWh−1.
Within Europe, Spain has the lowest LCOE cost of 90 $ MWh−1,
with an increasing trend in cost being observed when moving
towards the higher latitudes. Within each country of the European
region, further variability in LCOE is also observed with some
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Fig. 5 Global Distribution of RTSPV technical potential and LCOE values. a The geographical distribution of global RTSPV technical potential generated in
our study. Major world regions are highlighted in the image and data is provided for the total estimated rooftop area (RA), installed capacity (IC), and
potential generation (POT) for each region. The global landmass is color-coded into 11 RTSPV potential bins. Seasonal variation in aggregated global
potential is highlighted in the bottom right. b The geographical distribution of LCOE values generated in our study across the globe with major countries
highlighted in each world region. Each highlighted country has a corresponding aggregated LCOE value for the whole country. The LCOE values are color-
coded into 14 cost bins. Map boundary data from the Database of Global Administrative Areas (GADM: https://gadm.org).
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Table 1 32 Regions global distribution of rooftop area and solar potentials.

32 World regionsa Land area (1000 km2) BAFN (km2) BFEFN (km2) Potential (TWh yr−1)b

AFE (Africa East) 4355 6921 1246 214
AFN (Africa North) 5485 18631 3398 592
AFS (Africa South) 5537 18132 2443 413
AFW (Africa West) 13130 59604 8613 1317
ANZ (Australia and NZ) 7971 15581 2610 404
ARG 2780 9330 1749 285
ASC (Asia Central) 6622 36053 4981 748
ASE (Asia South East) 2334 62144 9568 1354
ASO (Asia other) 354 13121 2117 304
ASR (rest of Asia) 1642 8942 1561 219
BRA 8533 31962 6386 997
CAN 9904 13851 2394 327
CHN 9380 273585 35156 4375
ENE (Non-EU East) 1035 34634 4111 499
ENW (Non-EU West) 466 4199 630 75
EUE (Europe East) 1138 47700 5457 648
EUW (Europe West) 2984 134286 17467 2210
GBR 244 15798 2400 238
IDN 1899 35710 6163 878
IND 3160 78971 11731 1815
IRN 1623 12437 2004 341
JPN 372 41533 7942 1044
KOR 100 8758 1439 201
LAM (Latin America) 7231 27268 5028 805
MEA (Middle East) 1619 15742 2628 462
MEX 1956 20502 4037 720
ROW (rest of the world) 2426 1302 212 35
RUS 16832 58175 8038 941
SAU 1920 6333 918 169
TUR 780 13526 1716 265
USA 9457 160479 27585 4247
ZAF 1221 11954 2150 374
TOTAL 134491 1297163 193875 27512

aISO alpha-3 codes are the region names for individual countries, a group of countries as a region has names described in parenthesis.
bConsidering 100% rooftop availability at 10% panel efficiency.

Fig. 6 Monthly potential variability for 32 world regions. The heatmap represents the monthly variability of regional potentials. The values in the
parenthesis represent the highest monthly potential for the region. The color-coded heatmap represents % of the maximum monthly potential of the
region. Europe (EUW, EUE) has shown high intra-annual variability of the potential, with the maximum potential being realized in the summer months. In
the southern hemisphere, the maximum potential is realized in the winter months. Africa West (AFW) has shown the lowest variability in the monthly
potential.
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regions observing cheaper costs than neighboring regions in the
same latitude. In the African region, the majority of the total
potential can be realized between 110 and 160 $ MWh−1. Within
Africa, Nigeria, Gabon, and Cameroon have the highest costs
(around 150 $ MWh−1) to achieve their respective potentials.

North America, UK, and Japan have shown the highest cost to
realize the potential. This can be attributed to the high CAPEX
costs in the countries, which are expected to reduce in the future
due to technological innovations and reduction in import tariffs.
In North America, Canada and the northeastern states of the
U.S.A around the Great Lakes have the highest LCOE costs. The
cost to achieve the potential in these countries ranges from 200 to
280 $ MWh−1. U.K (251 $ MWh−1) has the highest country-
specific costs to achieve its potential.

Globally, CAPEX required to access potential varies both with
respect to the size of the GDP and with respect to the LCOE values
(Fig. 8a). To realize the complete potential in their respective
countries, low-income countries would need to invest capital which
is multiple times (up to 3.5 times) their 2015 GDP value even at

relatively low LCOE of between 80 and 150 $ MWh−1 to cover for
high upfront costs. For similar LCOE values, high-income countries
(World Bank Income Classification) can achieve their complete
potentials with a capital investment equivalent to a fraction (up to
half) of their 2015 GDP value.

We categorized countries into groups based on their GDP per
capita (GDPC) and on their yield factor (Fig. 8b). In this study,
we defined the yield factor as the yearly potential that can be
realized from 1 TW of installed capacity. Based on this
categorization, we found out that emerging economics including
India, Brazil, and Mexico have high yield factors (1.5–2) that
would favor the deployment of RTSPV in these countries. Even
though the LCOE difference between the two most populous
countries (India and China) is minimal, with the greater solar
endowment and with high yield factor, RTSPV technology rollout
becomes more favorable in India compared to China. However,
the uptake of RTSPV is still very low in these countries due to
lack of credit and the inability to pay the high upfront cost of the
RTSPV system. This highlights the need for global cooperation,

a

b c

Fig. 7 Regional supply cost curves based on a 20 $/MWh bin size and distribution of LCOE across regions. Regional Supply cost curves (a), showing the
cumulative technical potential for a given LCOE bin size. The absolute increase in the bar height represents the change in the added potential that can be
realized in a given LCOE bin. Near constant bar heights for consecutive bins are representative of a very small additional potential being realized at an
increasing cost. For a single bar, the height of the bar represents the cumulative potential that can be realized within a specific LCOE band. b Distribution of
potentials across LCOE bins of 10 $/MWh size. Potential extraction is the cheapest in Asia, followed by Africa and Europe. c CAPEX investment required to
achieve a specific total potential as a percentage of global GDP in 2015. Nearly 50% of global potential can be achieved at investment equivalent to 15% of
2015 global GDP value.
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technology transfer, and green financial instruments to accelerate
the deployment of low carbon RTSPV technology in low-income
and medium-income countries.

Discussion
The study showcases how a framework based on big data and an
ML model in conjunction with cloud computing platforms can be
used to undertake a planetary scale resource potential assessment.
We analyzed 130 million km2 of global land surface area by
utilizing learnings from global samples containing 300 million

buildings with 16 million km of roads. Using Google Earth
Engine and a ML model we demarcated 1.2 million km2 of the
built-up area containing 0.2 million km2 of rooftop area. As part
of the assessment, we generated (1) a global rooftop area dataset
(2) a global RTSPV potential dataset at a monthly temporal
resolution, (3) costs of attaining the technical potential. The datasets
were further used to generate high-resolution global maps of the
potential and costs. We have also advanced the current state of art
by combining the top-down and bottom-up approaches at a global
scale to develop a hybrid framework for resource potential assess-
ment which can also be used in advancing the assessment of global

a

b

Fig. 8 Global economic and technical variation in accessing the potentials. a Disparity in achieving full potential, with low-income countries requiring
capital investment greater than their respective 2015 GDP value to achieve full potential. b Distribution of 32 regions in relation to their relative yield factor
and GDP per capita. The red region focuses on countries that currently have high rooftop PV rollout. The green region focuses on countries where RTSPV
technology rollout will have maximum benefits.
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wind and bioenergy potentials. The assessment shows that a size-
able RTSPV potential of 27 PWh yr−1 exists at a global level that
can be attained for costs between 40 and 280 $ MWh−1. The
potential is highest in Asia followed by North America and Europe.
A capital investment of around 7 trillion dollars is required at
current prices to achieve a global RTSPV based electricity genera-
tion of 10 PWh yr−1 below the LCOE of 100 $ MWh−1, covering
3.72 billion people globally.

At the EU-27 regional level, our estimated rooftop area of
7596.4 km2 is similar to the 7935 km2 calculated in the Bodis et al.
study when incorporating a rooftop scaling factor of 0.3. For the
USA, our estimated rooftop area and annual potential of
8827 km2/1.9 PWh yr−1 compare well with the estimates of
8130 km2/1.4 PWh yr−1 presented in the Gagnon et al. study
when incorporating a rooftop scaling factor of 0.32. On a city
level basis, our potential of 1 TWh yr−1 is in alignment with the 1
TWh yr−1 calculated in a study by Hong et al.36 where they have
used advanced hillshade analysis to capture the effects of building
induced shadows in a dense urban topography. A detailed global/
regional/country and city level comparison of our results with
selected research work is documented in Supplementary Table 7.
From the comparison with other studies, we can conclude that
the results from our framework demonstrate high veracity as they
are within the margin of error of values present in the literature.
In addition, the good estimation accuracy of our framework at
high spatial resolution feeds into higher accuracies at aggregated
lower resolutions.

Our assessment has important implications for addressing the
twin challenges of sustainable development and climate change
with co-benefits in advancing SDG 3 and SDG 7. First, the ana-
lysis of spatial RTSPV potential presented in this study shows that
55% of the global RSTPV potential is spread across low-density
areas. This highlights an important aspect of solar transition,
where the majority of its benefits in providing cost-effective and
fast deployable electricity can be realized in rural areas. RTSPV
can thus aid in mitigating the energy poverty being experienced
in the less developed and sparsely populated areas in a country
where extensive grid integration may be costly or where com-
petition for land may exist. Nearly 20% of the global potential lies
in the high-density areas where the deployment of RTSPV can aid
in displacing fossil fuel-derived electricity with less polluting
electricity generation thereby reducing local air pollution60. Sec-
ond, from a perspective of energy equality and “leaving no one
behind” agenda of the SDG, the most disadvantaged areas with
respect to access to electricity are currently the low-income
countries3 which require the rapid and cost-effective deployment
of clean electricity generation infrastructure. Our assessment
shows that low-income countries may need significant capital
investments as steep upfront RTSPV installation costs in the
order of magnitude 2–3 times their 2015 GDP value to achieve
their country-specific potentials. At current costs, governments
may need to provide subsidies and seek external investments to
improve the prospects of deployment of RTSPV in these areas.
This highlights the vital role that the developed economies may
play in enabling the deployment of RTSPV in these countries by
the means of financial flows to realize the climate change co-
benefits. With maturing of the technology and the emergence of
an economy of scale, costs will further go down to enable a solar
revolution in these areas and aid in their low carbon energy
future.

Third, countries that are currently reaping their demographic
dividends like India and China are better suited for rapid
deployment of RTSPV. We showed that these countries have high
potential with low seasonal potential variability along with the
low cost of deployment. As these countries have the largest
population share globally with large building stocks, they can be

the first movers in decarbonizing their electricity generation
infrastructure by substantially deploying a decentralized elec-
tricity generation portfolio, further aiding in climate change
mitigation. Along with climate mitigation, RSTPV deployment in
these countries can gain a lot from the high workforce percentage
in the population in the form of cost-effective manufacturing and
operational maintenance. Fourth, the high-resolution assessment
can aid the local governments in identifying suitable locations for
the rapid deployment of energy generation infrastructure. This
way bottom-up formulation of energy policy can lead to inclusive
designing of nationwide policies to provide energy justice to the
citizens. Fifth, businesses and financial institutions like World
Bank and International Monetary Fund can analyze in-depth the
investment opportunities and risks in implementing RSTPV
infrastructures leading to local job creation and sustainable
development of manufacturing industries. Sixth, the information
contained in the assessment along with supply cost curves is a
measurable step forward and fills in a significant information gap
that is present in current integrated assessment models where
solar PV potentials are often represented as aggregated potentials
for utility and rooftop installations. Our assessment provides
insightful findings and technical potential datasets that will cer-
tainly aid in accurately modeling the future carbon-neutral sce-
narios to inform national energy policies61–66. This will no doubt
aid in exploring sustainable and inclusive low-carbon future
possibilities.

Our study shows pronounced variability of seasonal potentials
in the higher latitudes for countries covering Europe, North
America, and Australian regions. These regions have high elec-
tricity consumption per capita along with the financial capacity to
introduce significant VRE in the electricity generation mix. To
mitigate the variability of the potentials over the year, smart grids
that optimize the generation portfolio and the introduction of
regulator-driven mechanisms that balance the generation market
becomes important. Further, the introduction of new market
mechanisms67 is needed to effectively integrate the prosumers
and utility operators in competitive electricity generation mar-
kets. With falling prices of electricity storage technologies and
smart management of interconnected grids, RSTPV technology
will play a critical role in these markets by undertaking genera-
tion, storage, and system balancing roles.

In conclusion, our assessment shows that the current electricity
generation potential of RTSPV exceeds the current (2018) yearly
aggregated global electricity demand68. Our assessment also
shows that a minimum of 50% of the total global rooftop area is
required to meet the yearly global aggregated electricity demand.
Due to the diurnal cycles of solar insolation and to balance the
seasonal and daily variability of the RTSPV generation, the role of
storage solutions to compliment RTSPV electricity generation is
critical in realizing the maximum potential of this technology and
to meet the peak daily demand. Hence, the practical realizable
potential of RTSPV will depend on the future cost trajectory of
storage technologies, capital expenditure related to the technol-
ogy, and the overall configuration of the energy system.

Even with its limitations and shortcomings the current
assessment is still the state of art and provides researchers with
global analysis datasets. The underlying methods and datasets
have been peer-reviewed and are of the highest quality currently
available and represent a generation advancement over the
datasets used in the current state of art methods. The current
dataset can be improved by using a next-generation 10 m reso-
lution landcover dataset and with an increase in the spatial
resolution of the population and solar data at a global scale. Better
data processing platforms can enable further work to be accom-
plished at a 1 km resolution providing a 100 times increase in the
spatial representation of the potentials. In addition, inputs in the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25720-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5738 | https://doi.org/10.1038/s41467-021-25720-2 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


form of realistic regional variation in the rooftop availability will
aid in narrowing down the uncertainty in potentials and cost and
should be the next logical research step in model improvement.

Methods
Top–down method. We generated a total of 3,521,120 fishnets using the ArcGIS
PRO desktop application for all the global landmass except for the continent of
Antarctica. The FN grid is the lowest unit of data aggregation in our method. The
FN’s at the boundary of two countries have a common Fishnet identifier but
unique country attribution with FN being split at the boundary. Next, the fishnet
polygons were uploaded to Google Earth engine platform69 (GEE) to calculate
satellite-derived Built Area (BAFN), Population (PPLNFN), and conversion factors
(CFFN) for each fishnet cell.

We utilized the global land cover (LC) layer from Copernicus Global Land
Service v2.0 to calculate BAFN values within each FN. This landcover classification
layer was chosen for its robustness and near-global coverage and it is backed by
exhaustive testing and validation. The LC has many categories of classifications,
amongst which built-up area is one of the classifications. The built-up classification
is in turn derived from European Space Agency’s World Settlement Footprint 2015
layer that is derived from a 10 m resolution sentinel mission’s radar and optical
imagery. To calculate the total built-up area in each Fishnet cell, the LC raster file
was first cut into smaller sizes based on each fishnet’s geographical bounds. The
individually cut LC dataset was then aggregated using the following:

BAFN ¼ ∑ðPXV ´PXAÞ ð1Þ
where BAFN is the Built-up area in each fishnet cell, PXV is the pixel value (0–100)
representing the percent of the built area in each pixel, PXA is the area occupied by
each pixel.

To map the number of people living in each fishnet cell, we utilized a global
population raster file at 100 m resolution provided by the WorldPop project. The
population raster disaggregates the recorded United Nations population counts in
an administrative unit to a finer resolution using ML-based methodology. The
population raster file was split into smaller entities based on each fishnet cell’s
geographical bounds. Then, a masking file containing areas covered by the LC layer
within each fishnet cell is used to mask the population outside the bounds of the
BAFN area in each fishnet. The individual small population dataset was aggregated
for each fishnet cell using the following:

PPLNFN ¼ ∑PXðNMÞV ð2Þ
where, PPLNFN is the total count of people living in each fishnet, and PX(NM)V is
the pixel value of each pixel that is not masked by the overlay LC layer. The
population raster file was masked to remove any population count data that is not
part of the LC pixel. The masked population raster pixel can be attributed to
artifacts induced due to the downscaling algorithm in the original dataset or extra
built-up areas that were external to the LC layer. To maintain homogeneity in the
analysis, the LC layer was taken as the base for all analysis, and any area not
covered by (BAFN) was assumed to be not present on the ground, even if it actually
exists as ground truth.

The CF factors were calculated using World Bank’s SolarGIS raster datasets.
The dataset is provided as a 1 km resolution raster dataset with each pixel
providing daily kWh generation for each kWp (peak) installed capacity within that
pixel at a monthly resolution. The dataset has been generated using extensive
simulation and validation of solar insolation, power conversion losses, effects of
atmosphere, and panel aging using 20 years of documented data. For each fishnet
cell, the CF factors were aggregated using the following:

CFM;FN ¼ 1
n
∑
n

1
PXV ð3Þ

where, CFM,FN is the CF factor for each month for each FN, n is the number of CF
pixels in the FN and PXV is the pixel value of each pixel in the FN geographical
bound. All three datasets (PPLNFN, CFFN, BAFN) and FN geometries were first
processed on the ArcGIS Pro desktop application to harmonize coordinate
reference systems and then uploaded to the GEE platform for processing. On GEE,
we split the datasets based on individual FN geometries and aggregated the three
datasets based on the rules highlighted above. GEE’s cloud computing architecture
can process a large number of datasets in a relatively shorter time frame and
outputs a tabulated dataset for further processing.

Bottom-up method. To generate ground truth building footprints, we collected
building polygon shapes as vector layers from big data sources. For building
footprint samples, we used AI-generated building footprints by Microsoft AI and
Ecopia AI teams. These two datasets cover the entire USA, Canada, and 39 African
countries. The samples from Microsoft AI and Ecopia AI (>300 million individual
buildings) were split up based on the FN layer for each FN cell overlapping the
sample countries, further masked to remove building footprints outside of the
BAFN layer. The unmasked building footprints were aggregated based on the fol-
lowing:

BFFN ¼ ∑BPðNMÞV ð4Þ

where BFFN is the aggregated building footprint for each sample FN and BP(NM)V
is the unmasked individual building footprint polygon area within the FN that is
overlapping the BAFN layer. The masking removed buildings constructed after the
2015 reference year. Although the BAFN layer covers the entire extent of the built-
up area globally, it can still miss some built-up areas due to artifacts in satellite
imagery. However, this is negligible and for the purpose of our study considered as
the reference layer on which to base our analysis. Overlapping building footprints
were dissolved into a single polygon before splitting and polygons being intersected
by an FN boundary were split up at the line of intersection. For the rest of the
world, OSM-derived building footprints (accessed April 2020) were analyzed and
aggregated based on Eq. (4). A total of 4000 global FN samples were selected from
the OSM building dataset. The sampling strategy to generate the 4000 OSM
samples was to extract buildings bound by FNs that had BFFN/BAFN ratio of
between 0.15 and 0.11. These ratios correspond to the 75th percentile and 50th
percentile of data processed from Microsoft AI and Ecopia AI datasets. In total, we
were able to successfully collect samples from nearly all the global countries cov-
ering different stages of socio-economic development, cultural spread, and geo-
graphical locations.

The road length metric was derived entirely from the OSM datasets. To process
the RL dataset, OSM’s planetary dataset file (accessed April 2020) was used. The
planetary file has roads represented in the form of lines attributed by the different
types e.g., residential, highway, footpath, etc. The line feature was split up based on
each global FN, masked using BAFN layer, and aggregated based on the following:

RLFN ¼ ∑LðNMÞV ð5Þ

where RLFN is the aggregated road length for each global FN and L(NM)V is the
individual length of all the roads within each FN overlapping BAFN layer. It was
observed during the aggregation of the RLFN dataset, that road endpoints in the
OSM dataset overlap in some locations, these overlaps were dissolved into single
line features prior to aggregation. Also, some roads extend beyond the BAFN layer
within each FN. These roads were clipped at the BAFN boundary to maintain a
homogenous extent for the region of interest for all the datasets used in the
analysis. In total, we were successful in processing the road infrastructure for nearly
all the countries of the world.

Loading, splitting, and geometry processing for the building footprints and the
road lines were performed using ArcGIS PRO’s multicore support. The aggregation
of the datasets and mapping of the aggregated dataset with FN boundaries was
performed using custom python scripts built on DASK70 parallel compute module.
Due to the sheer size of the data being processed, we found that multicore
architectures and parallel computing frameworks developed in recent years can be
of great use in designing and executing planetary-scale analysis with minimal cost
and time requirements.

We have used cloud computation in the form of the Google Earth Engine
platform. In general, parallelization of the data processing was performed in four
ways, first when disaggregating global raster datasets and mapping the aggregated
values to our global FNs. We did this task for 12 monthly solar rasters, 1 Landcover
raster, and finally for the global population raster. Here, we ran all the raster
algebra and mapping codes on Google Earth Engine where the backend data
processing was split into multi parallel streams and executed on google cloud
infrastructure. This led to the speeding up of the data crunching as raster algebra is
highly parallel in its execution where each raster cell can be worked on
independently. Second, when disaggregating global vector datasets and mapping
the aggregated values to our global FNs. As of the time of writing this article,
Google Earth Engine was less efficient in undertaking vector analysis. The reason
for this is that instead of pixel raster surface which can be computed in a parallel
fashion, vector datasets need specialized algorithms. Here, we utilized the multi-
core parallel processing architecture of ARCGIS Pro where vector datasets in the
form of building footprints and roads can be effectively processed by splitting the
map into different regions and processing each region on a single core. This task is
performed in the backend using apache spark. Third, when doing data aggregation
and manipulation inside desktop python environment. Large components of the
data processing ranging from calculating rooftops to LCOE calculations were
performed using the DASK framework. In this framework, data frames can be
broken down into small chunks and processed in parallel. This provided us with a
significant reduction in processing times. Fourth, when training ML model.
Custom scripts were written on python to perform hyperparameter optimization
and 10-fold cross-validation in a parallel fashion. Each of the 10-folds of the cross-
validation was assigned to the independent core of our 12-core machine which led
to faster convergence of the hyperparameters to an optimal solution.

Downscaling model. The ML model was trained on PPLNFN, RLFN, BAFN as
independent variables and BFFN as the dependent variable for each sample FN. The
first step in model preparation was to impute the missing data in the independent
variables. The imputations are necessary as some FNs have either missing popu-
lation or road length data due to the global scale of the analysis. This discrepancy is
expected and is present due to OSM roads not being mapped for every road on the
planet and also due to the downscaling methodology used in generating the ori-
ginal population raster by WorldPop.

Data imputation was handled using a custom python script utilizing the Scikit-
Learn71 module’s iterative impute function. Further, we generated the downscaling
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model using XGBoost72 framework. When choosing between Neural Network-
based framework or Gradient boosting frameworks, we used the latter as XGBoost
framework has shown superior performance, while using considerably less
computation time to reach an optimum model state. Also, being run on CPU-only
architecture, the XGBoost framework can generate repeatable results in each
subsequent run, which is difficult to achieve on a GPU-based framework like
Neural Networks due to inherent uncertainty induced by the massive parallel
compute architecture of a GPU.

The base XGBoost model was customized for our task by hyper-tuning the
parameters of the model using 5-fold cross-validation. Each fold of the cross-
validation generated a mean square error (MSE) loss metric at the end of its run.
The mean of all five MSE was chosen as the metric to reduce during the hyper-
tuning process (final model parameters are present in Supplementary Table 1). The
trained model was then used to estimate building footprint values for each global
FN cell using PPLNFN, RLFN, BAFN values. The final output of the downscaling
(BFEFN) was stored as a global 10 km resolution raster file where each pixel
represents the estimated aggregated building footprint for each FN.

Technical potential estimation. To calculate RTSPV potential from BFEFN, we
made some generalizing assumptions to maintain uniformity in our calculations.
We assumed that the estimated building footprint is representative of the available
rooftop area in each FN i.e., 100% of the estimated rooftop is available for solar
panel installation. To install 1 kWp of roof-mounted solar PV, 10 m2 of rooftop
area is required, which is in line with the thin film technology currently in use. The
roof-mounted solar PV is installed at the optimum angle for each latitude and is
sun-facing and shade-free to generate maximum electricity output. The building
rooftops are flat in design leading to the utilization of the entire rooftop for the
installation of solar panels.

Based on the assumptions i.e., 10 m2 area for a 10% efficient panel, the technical
solar potential is calculated for all the global FNs for 12 months using the
following:

SPM;FN ¼ BFEFN ´CFM;FN ´
DaysM
10

ð6Þ

where SP is the technical solar potential, BFEFN is the estimated roof area in m2, CF
is the conversion factor, M is the month and FN is the unique fishnet cell, and
DaysM is the number of days in the respective month. The World Bank’s solar
conversion factors are available for regions between 60°N and 45°S. For regions
beyond 60°N and 45°S, we assumed a constant conversion factor of 3.5 kWh/kWp/
day. This has led to a slight over-assessment of the potential for countries like
Sweden, Norway. However, as the density of built-up area reduces significantly
beyond the 60°N and 45°S, the total global error due to this assumption remains
small. The calculations for generating the solar potential are processed using
custom python scripts using the DASK module to handle massive arithmetic
operations. Further, the processed solar potential raster dataset is stored as a
geopackage file for visualizations and economic calculation.

Cost calculation. LCOE provides an easy and robust method to compare the
economic viability of a project within a specific FN. It was assumed that the capital
cost of the installation (CAPEX) will be staggered to the first year of commis-
sioning and the installed panels will have a lifetime of 25 years. The geo-mapping
for CAPEX, operating expenditure (OPEX), and discount rate (DR) was sourced
from IRENA’s renewable energy cost report 2019. The LCOE for each FN is
calculated using the following:

LCOEFN ¼
∑25

t¼1CAPEXFN þOPEXFN;t

ð1þDRÞt
∑25

t¼1∑
12
M¼1SPM;FN

ð1þDRÞt
ð7Þ

where, CAPEXFN (2019 $/kW) is the capital expenditure in installing the RTSPV
system for the given FN, OPEXFN,t (2019 $/kW) is the operational and main-
tenance expenditure for the given FN and for the specific year (t), t is the year
number, DR is the discount rate, M is the month number, and SPM,FN (kWh/
month) is the potential generation for the given month and FN. We have used
CAPEX data for 17 different countries and allocated the average CAPEX value to
the rest of the countries based on the continent they are in. OPEX and DR have
values based on OECD and Non-OECD country classifications. Country-wise
aggregation of LCOE, SP from each FN from their respective high-resolution intra
country values has been done using the following rule

LCOEcountry :

CAPEX : aggregation of individual FN values

OPEX : aggregation of individual FN values

SP : aggregation of individual FN values

DR : mean of indiviual FN values

8
>>><

>>>:

9
>>>=

>>>;

: ð8Þ

It should be noted that we did not consider the cost of additional grid expansion
or storage infrastructure to attain the full technical rooftop solar PV potential. Also,
the cost of decommissioning and scrap metal value of the installation was not
considered at the end of the 25-year lifetime of the projects. While calculating the
SP and LCOE, it was assumed that no rooftop solar PV installation exists globally,
and all the additional capacities will start their commissioning from the year 2019.

Limitations. Our assessment is based on the accuracy of the global landcover layer,
which with its 100 m resolution can in some locations overestimate the built-up
area extents. In addition, the landcover classifies roads, parking lots, boundaries of
green areas, tennis courts, and archeologically significant areas as built-up areas
with misclassification varying between different regions. Our assumption that the
rooftops being flat, shadow-free and sun-facing with a full rooftop available for
installation adds to the methodological limitations. Next, the big data related to
building footprints and global roads have inherent methodological limitations like
the simplified representation of a complex rooftop with a square polygon, over-
lapping roads, etc.

For technical potential calculations, we assumed that 100% of the estimated
rooftop is available for installing solar panels i.e., orientation and slope of the
building are not accounted for the 100% rooftop availability assumption-based
results in our main analysis. These assumptions can lead to limitations in the real-
world interpretation of main results as a fraction of rooftop may be available for the
installation of solar panels. To account for this, we have documented regional
change in potential as an uncertainty analysis for a combination of rooftop scaling
factors and panel efficiencies. In the current literature, reduction of total rooftop
area to available rooftop area is generally done through a rooftop scaling factor
which is a proxy for loss of rooftop area due to orientation, slope, and roof
superstructures like chimneys, etc. Although, some studies exist at the country level
where the rooftop scaling factor is documented, on a global scale no authoritative
dataset exists that can demarcate country-wise rooftop scaling factors. Further
work is required to document the country-specific rooftop scaling factors which are
outside the scope of the research aim of this study.

Our cost assumptions cover 17 different countries across continents with
average values for the rest of the countries. These assumptions can assign increased
or decreased LCOE values to a certain region like Africa and South America.
Another limitation of the cost assumptions is the inability of the LCOE metric to
capture intra country variation of LCOE to a high degree due to lack of high-
resolution cost data. Also, cost variability due to additional grid rollout, tariff
mechanisms, and global change in prices due to trade protectionism practices are
beyond the scope of the current assessment. Finally, we calculated all the cost and
potential metrics assuming that no installed capacity exists for the ROI, where in
the present time horizon, some installed capacity does exist.

A majority of limitations can be attributed to the underlying data used in our
assessment, which can be improved with subsequent advancement in the
methodology of the data providers. Further research can be undertaken to reduce
the methodological limitations that are currently bootstrapped by the data
availability and lack of homogenous global data.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The global road map is based on OpenStreetMap
(OSM), which can be freely downloaded. The planet file used in this study is downloaded
on April 1, 2020. The landcover map is based on Copernicus Global Land Service: Land
Cover 100 m: collection 3: epoch 2015: Globe (https://doi.org/10.5281/zenodo.2583745).
Other data sources that are free to use are provided in the main text and in the
“Methods” section.

Code availability
Pseudocode to undertake this analysis can be found in the supplementary material
(Supplementary Note 1) and should be read in conjunction with the “Methods” section.
Base XGBoost Model is available at https://xgboost.readthedocs.io. The python script for
plotting and data aggregation is available from the corresponding author upon
reasonable request.
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